Harry Seldon's blog

Fractals, Chaos, and Control Systems on Rails

Read

Amazing video : Flight Software for the Apollo Mission

Posted by Harry Seldon on August 10, 2009

Gosh, I thought that, nowadays, writing flight code was constraining. Here is what you had to do to write code in the days. I would not say “It was better before”.
Btw, If you wonder what the navigation software really is for an aircraft (or spacecraft). I send you back to the guidance, navigation and control series I wrote some months ago.

Really amazing.

Posted in | no comments | Tags , , , | atom

Control Systems 102: GNC, Conclusion

Posted by Harry Seldon on May 25, 2009

It’s time to get the conclusion of this Guidance, Navigation and Control post series.

Conclusion

To sum up:

And finally, “do not put the cart before the horse”. The cart is the guidance system, the horse is the control system. A good guidance without a good control is totally useless. A good plan is nothing without a good pilot. I’d rather fly in an aircraft with a good Stability and Control System and a poor Guidance System than the opposite. In the first case you might not reach your wanted destination, in the second case you will crash!
We live in an economic world with a lot of guidance and very little control. That is why the finance world totally collapsed, leading us to the current global crisis. More details in a future post…

Posted in | no comments | Tags , , , , , , , , , , , , | atom

Control Systems 102: GNC and Human Pilot

Posted by Harry Seldon on May 19, 2009

This post is part of a series about Guidance, Navigation and Control. See the table of contents here.
3 parts are in this post because they are shorter:

  • About the human pilot (with fresh news: man in an Unmanned Aerial Vehicle is for “soon”)
  • About GNC wordings
  • About the various control loops

About the human pilot

At the beginning of aeronautics, the human pilot was actually a pilot. That is the person had to stabilize the airplane. He was permanently using the flight stick. This was a full time job and a navigator was required to keep track of the aircraft position. Then thanks to a better Navigation System and thanks to the autopilot, the human pilot became more a navigator and a flight manager giving high level orders (altitude, etc.) to the plane in accordance with the flight plan and the Air Traffic Control (ATC).
The next steps are:

  • Fully automatized flight. The commercial airplane flies autonomously, it receives its orders from the ATC through a radio data link. The captain is responsible for the flight safety and can fly the aircraft in case of emergency. This can be forecast for within 20 years. A passenger will be aboard a small UAV (unmanned air vehicle) in probably less than 10 years.
  • Fully automatized ATC. This can be forecast for within 30 years. Unless videoconference kills aviation before that!

To prove that what I am speaking about is not utopia. Here is a news I learned a few days after writing this article. Boeing has filed a patent for an aircraft that could fly autonomously, with one pilot or two pilots. It seems to be for a helicopter. For the moment, the autonomous mode is meant to work when there is nobody inside the aircraft but the step to an autonomous flight with people on-board is then very small (even if it would be a giant step for mankind). So I tell you it is for sooner than you may expect.

By the way, the world will need more and more Control Systems Engineer. Even today, at this time of crisis, the world (France, UK and US at least) is lacking of such engineers so you can study it safely, you won’t be unemployed.

About GNC written GN&C or GCN written GC&N

The acronym GNC can appear in several variations according to what you want to emphasize. GN&C means you separate the low level stabilization (C) from the higher level orders (G&N). GC&N means you associate G and C which are technically similar and you separate them from the Navigation which uses more advanced tools such as the Kalman filter. Both wordings are then completely justified.

About the control loops

Notice we have a lot of Control Systems working on top of each other in an airplane:

This is something to keep in mind that in order to control a system you need several loops from the low level to the high level. The most important system being the pilot (the Stability and Control System). Once you can safely achieve your basic moves (once you have a stable system), then you can think about making long trips and accomplishing a complete plan.

I am anticipating on the conclusion but never forget that the low level control loops are the most important even in “company control”, else you are going straight to a crash. Our (financial but not only) world has completely forgotten that.

Next part will be the conclusion.

Introduction
Navigation
Stability and Control
Guidance
About GNC written GN&C or GCN written GC&N
About the human pilot
About control loops
Conclusion

Posted in | no comments | Tags , , , , , , , , , , , , | atom

Control Systems 102: GNC, Guidance

Posted by Harry Seldon on May 12, 2009

This post is part of a series about Guidance, Navigation and Control. See the table of contents here.

Guidance

Guidance refers to the questions ”where am I going to?”, ”How can the vehicle follow a trajectory?”. The trajectory itself is prepared by the Flight Planning System (FPS) (or Mission Planning System, MPS). During the flight, the Flight Management System (FMS) knows the trajectory and gives the current portion to the Guidance System (GS) . The Guidance System is in charge of converting the high level parameters (trajectory, waypoint positions) into a set of lower level orders that can be understood by the control, typically altitude, heading or directly a load factor, that is an acceleration. In some cases the guidance can have the role to compute a trajectory between 2 points.
It is also in charge of maintaining the trajectory and the other high level parameters. That means the guidance is itself a control loop. Typically the guidance is the Position Control System (PCS).
This is where things become tricky. Piloting and Guidance are essentially similar. The difference to keep in mind is that the pilot is a low level control loop whereas the guidance is a high level control loop. A nice world would be a world where guidance and pilot loops are two independent loops. Unfortunately both are coupled, and designing one, you need to keep the other one in mind.

GNC

Next chapter will be about GNC and human pilot.

Introduction
Navigation
Stability and Control
Guidance
About GNC written GN&C or GCN written GC&N
About the human pilot
About control loops
Conclusion

Posted in | no comments | Tags , , , , , , , , , , , , | atom

Control Systems 102: GNC, Control

Posted by Harry Seldon on May 04, 2009

This post is part of a series about Guidance, Navigation and Control. See the table of contents here.

Stability and Control

Control answers the question ”How can the vehicle be stable?”. For an aircraft, it means “how can the aircraft accomplish basic moves such as flying straight, climbing, descending?”. A more technical definition of stability would be “the tendency of the vehicle to maintain or deviate from an established flight condition”. Control is the ability of the vehicle to be manoeuvred or steered from one flight condition to another.
It is very important to notice that questions regarding the stability (as opposed to a crash) are mainly addressed by the control and not the guidance nor the navigation. That is why one often speaks about Stability and Control System (SCS) and not only Control System.
The SCS is made of two parts: Stability Augmentation System (SAS) that stabilizes the aircraft (if it is naturally unstable) and improves its handling qualities. Then, the Control Augmentation System (CAS) typically allows the vehicle to maintain its altitude or heading. These functions are called altitude hold and heading hold modes in the AutoPilot (AP). The SCS creates the low level orders directly sent to the actuators (ailerons, rudder, elevator, engines, etc.). It is also sometimes called the Piloting System, meaning piloting is associated to low level, stabilization work.
Thus, how to fly is known by the control. Once it is done, higher level objectives can be achieved such as following a trajectory, that is going from a point A to a point B. High level orders will be sent by the guidance system.

GNC

Next chapter will be about Guidance.

Introduction
Navigation
Stability and Control
Guidance
About GNC written GN&C or GCN written GC&N
About the human pilot
About control loops
Conclusion

Posted in | no comments | Tags , , , , , , , , , , , , | atom

Control Systems 102: GNC, Navigation

Posted by Harry Seldon on April 27, 2009

This post is part of a series about Guidance, Navigation and Control. See the table of contents here.

Navigation

Navigation (Nav) refers to the question ”where is currently the vehicle?”. A Navigation System (NS) aims at giving you your position. Nowadays the main sensor associated to navigation is definitely a GPS (Global Positioning System) sensor. More generally the Nav collects all the data from the sensors and processes them to make a precise, smooth and high frequency information about position and speed.
The main control theory tool for navigation is probably the Kalman filter. Typically, embedded on board an aircraft, the navigation will combine GPS data, air data, inertial data and the aircraft dynamical model into a Kalman filter.

GNC

Next chapter will be about Stability and Control.

Introduction
Navigation
Stability and Control
Guidance
About GNC written GN&C or GCN written GC&N
About the human pilot
About control loops
Conclusion

Posted in | no comments | Tags , , , , , , , , , , , , | atom

Control Systems 102: GNC, Guidance, Navigation and Control, Introduction

Posted by Harry Seldon on April 27, 2009

Guidance, Navigation and Control are often together. It makes perfect sense because all three of them depend on control theory and because they are the components of the software part of a Control System. But do you clearly know the differences between Guidance, Navigation and Control? I am going to explain them taking the example of an aircraft. In future posts I will take other examples such as a company, a country government or the go game. This series of posts is a follow up of Control Systems 101.

GNC

This post was quite long so I decided to cut it in several parts. Even cut in several parts, the point remains to consider GNC as a whole, it is not to make extensive explanations on each topic. Wikipedia would be fine for this, whereas it is not so good as far as the GNC topic is concerned. According to your comments, I may update Wikipedia with the little work made here.

The first chapter presents the Navigation System.

Here is the Table of Contents (TOC):

Introduction
Navigation
Stability and Control
Guidance
About GNC written GN&C or GCN written GC&N
About the human pilot
About control loops
Conclusion

Posted in | 2 comments | Tags , , , , , , , , , , , , , | atom

Facebook's Control Theory group, you know you are a Control theorist when

Posted by Harry Seldon on February 26, 2009

You will want to join the Control Theory group on Facebook if, or you know you are a Control theorist when:

  • For you, Vibration Control is not only a Sex toy.

  • Finding the good frequency is not only the problem of your girlfriend.

  • “Slower, Faster, now it is good” reminds you your work.

  • You see everything as a control system. (which is called being controlphrenic)

  • You have already thought “laws are way too complex, a PID would do the job”.

  • You have already said to your lawyer “Don’t tell me about laws, I am designing them all day”.

  • Every 10 words you say is either feedback, stable, unstable, transient, control or state.

  • Kalman is some god.

  • Navigation is for you another word for Kalman filter.

  • You know the difference between guidance, navigation and controls.

  • For you, airplanes, rockets, cars, finance, politics, trains, teams should be controlled with some good sensors, good actuators and good controls.

  • “Everything is under control” means something to you.

  • Socrates should have said “control yourself” instead of “know yourself”.

  • Every Pilot should be an “Automatic Pilot”.

  • But actually, you do not enter an automatic vehicle ,”you know too much” ;-)

  • ‘Chaos’ does have not the same meaning as for anybody else.

  • Control theory can save the world

Feel free to complete the list in the comments!

Posted in | 2 comments | Tags , , , , , , , , | atom

Search

Navigate


Recent Comments

Recent Posts

Tags

actuators aircraft atc blog chaos chaos_theory charts control controllers controls crisis economy finance flight fractals git gnc gs guidance linux mandelbrot marketing navigation ns ofc on pilot rails ruby sas scs sensors statistics systems techcrunch thinkosphere tutorial typo ubuntu wifi

Categories

Archives

Syndicate


Sponsor